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Two-dimensional type-I intermittency
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The general structure of two-dimensional intermittency is discussed. The structure of channel and the
trajectory in the return map are compared with those of one-dimensional intermittency and the scaling relations
are obtained according to the trajectory. We illustrate the temporal behavior and scaling relations in a coupled
map. The numerical results agree well with the theoretical predicati«éh)efl/\/z.
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Intermittency is an occurrence of the signal that randomly X 1 =F(X.) 1)
. . n+1 n/s
alternates between almost regulso-called lamingrperiods

and shorter chaotic bursfd,2]. The phenomenon is fre- \yherex, e RY andR? is the d-dimensional Euclidean vector
quently observed in real fluids, irregular reversals of thespace. The necessary condition for high-dimensional inter-
Earth’s magnetic field, earthquakes, electronic circuits, etcmittency isd=2. In order to set up the return map in high-
[3]. As it was considered to be one of the main routes tqjimension, we consider (3-dimensional vector space with
chaos, theoretical and experimental investigations foIIoweq)ZMp’)zn) by following the analogy in the one-dimensional

to explore its scaling propertiggd—6]. The scaling relation here is the p-i di % h
of the average laminar length depends not only on the strud€turn map, where, ., is the p-iterated image ok, suc

ture of the local Poincarmap[2] but also on the reinjection thatx,.,=fP)(x,) andp is the period of neighboring peri-
probability distribution[6], since the laminar phase appearsodic orbit. The equation?w:)?n defines ad-dimensional
when a trajectory passes through the narrow channel betweeliagonal hyper surfac€dHS), which is ad-dimensional ob-
the local Poincaranap and the diagonal line in the return ject embedded in (@)-dimensional space.
map and after escaping from the channel, the trajectory re- It is difficult to visualize the geometrical shape of the
turns to it with a certain probability according to the global high-dimensional return map unlike in one-dimension. For-
structure of the system. Also, the phenomenon shows atunately, however, in a two-dimensional system we are able
anomalous scaling relatidi7,8] when noise is presented.  to devise a suitable scheme to visualize the return fhap
Recently, it was reported that intermittency is very impor-So we consider two-dimensional map such that, ;
tant to the analysis of phase jump phenomena and the mys=f(x,,y,), Yn+1=9(X,,Yn), Which is locally defined near
terious scalings near the synchronous regi@g For ex-  the bifurcation point. If we arrange two degrees of freedom,
ample, the investigation of type-l intermittency with noise x,,, ; andy,, ;, on the same axis we obtain a tractable three-
enables us to analyze the phase jump phenomena and scaliighensional view in terms ofX{,,Yn,Xn+1,Yn+1) coordi-
in the coupled Rssler oscillatord7] and so does type-ll nates and we call it a two-dimensional return map. The DHS
intermittency with noise in the hyper-RBsler oscillator$8]. is the two-dimensional surface embedded in
So studies of resolving the roots of phase synchronizatiofix,,y, ,X,+1,Yn+1) Space that is defined by, ;=x, and
were reinitiated in connection with intermittency. Despite ally . .=y, (see Fig. 1[14].
the rush, however, the problem is that all the studies are The gap between the DHS and the local map forms a
limited to low-dimensional chaotic systems because the mosthannel and the system is in a state of the laminar phase
known intermittency is the low-dimensional phenomenonwhen the trajectory passes the channel. The structure of the
that can be described in a one-dimensional return map. Tewo-dimensional return mafl3] can be clearly understood
analyze phase synchronization of high-dimensional chaotigshen we compare it with that of the one-dimensional one.
systems, studies of high-dimensional intermittency are reThe diagonal line in the one-dimensional return map be-
quired. comes the DHS in the two-dimensional one. That is, the
In this paper, as the first step for investigating high-parabolic curve X, ;=ax?+x,+ €) in the one-dimensional
dimensional intermittency, we introduce two-dimensionalyetyrn map becomeecause of the local property near the

type-I intermittency{10] that occurs near the tangent bifur- tangent bifurcation pointthe parabolic surface in two-
cation point like one-dimensional one, but which can be il-dimension such that

lustrated in a two-dimensional map that is not reducible to

the one-dimensional return mépl]. We discuss the features Xn41=a1X+ ay2+ agXnyn+ asX,+asyn+ ag,
of the system in comparison with those of one-dimensional )
intermittency in terms of scaling behaviors and the channel Yii1=b1X2+boy2+ baXnyn+ baXn+ bsyn+ b,

structure of the map.

The first-order difference equation thdimension[12] is  wherea; andb; are the arbitrary expansion coefficients. In
the two-dimensional return map, there are two independent
directions &, , y,) and the next iteration point is determined
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62 FIG. 2. The bifurcation diagram fg8=0.5. The inserted arrow
“ points out the critical value ot,=0.674 14 . . . forperiodic orbit.
05 (Note that the initial condition was not reset at each step @b

track an attractoy.

Xn+1=4aX(1=X,) + BYn(1—Xp),

FIG. 1. The two-dimensional return map and the DHS. (3)
Ynr1=4ayn(1=Yn)+ BXy(1-yp),

Figure 1 shows a schematic view of our two-dimensional

i dits ch s A ding to th 00 where « and B are parameters. The equations are two-
return map and 1ts channeis. According to the ofsiteO, dimensional extensions of the logistic map and can be con-
0O,, andO3 in Fig. 1 on thex,-y, plane the channel be-

P - sidered as the mutually coupled system.
tween the DHS and the local Poincaneap is differently An example of bifurcation diagram is presented in Fig. 2

formed as given in Fig. 1 and this causes the channel diStrWhenﬁzo.S. Asa grows, the system develops to chaos via
bution. So in high-dimensional intermittency, one of the cru-Hopf bifurcation (0.652...<a<0.7172...) andperiod
cial factors that affect the laminar scaling is channel distri-goubling one (0.717. . .<a) [12]. It is interesting that the
bution function(CDF) P(e). system spontaneously collapses to a one-dimensional system

The evolution procedure is as follows: at the initial pointat «=0.717 . . . . This phenomenon seems to be caused by
(X% ,y}) we obtain the normal vectors, andn, on thex,-  the form of the couplings. In Ed3), if x, andy, are syn-
Yn p|ane and they contact at the points afx chronized by chance in the Overlapped chaotic band
=(x%,y5 xE,) and c,=(xE,yi.yk.,), respectively, (0.70%7 ...<a<0.712 .. .) thecoupled systems are com-

pletely synchronized and reduced to a one-dimensional logis-

- . tic map.
points we obtain the evolution vectargandt, after parallel Theptemporal behaviors of two-dimensional intermittency
stretching of the point to the DHS in the directionxgfand  5.¢ given in Fig. 3 near the period-14 window @ «
Yn, respectively. Then the next iteration point is determined=p 6741 . . ., 5=05 and (b) «=0.778264 ..., B
by the sum of two evolution vectors such th&t: fx+fy. =0.3[15]. They are clearly distinguishable from those of the
The same procedure can be repeated to get time evolutiom®nventional intermittency. Figurd& shows continuous in-
of a trajectory.

The intermittent behavior in two-dimension can be classi- 1 @
fied into three trajectories on the,-y, plane[12]: (a) the 09 k 8
limit cycle that shows a unique trajectorgp) the quasiperi- 08 _L"\m
odic trajectory that uniformly fills a region and causes the
uniform distribution of channel, andc) the chaotic one = o 1x10° 2%10°

whose channel gets a fractal structure by the chaotic passag>< 10
rrl A OHMH
AaEs |
S “id

wherex}, ,=f(x},y}) andy}, ,=9(x5 ,y}). From those

In case of the limit cycle, the channel structure is similar to

(b)

= [ .
that of one-dimensional type-l intermittency because the > H u ! > ”_,r! H I_ ! "'._l_
channel is unique. But for the others the channel structure it LSRR I P AT R IR D RO

different from the conventional one because they suffer mul- 0.7 - .

tichannel effects. Thus we see that the CDF plays a crucia 0 1x10 210

role in the passage and the scaling relations of the average n

laminar length. FIG. 3. The temporal behavior of two-dimensional intermittency
The above features are clearly illustrated when we connear limit cycle(a) (a=0.674 103,8=0.5) and chaotic regiotb)

sider the following two-dimensional map: («=0.778 2651,8=0.3).
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=0.7782651..., B,=0.3).

FIG. 4. The multichannel structure in the return mgp 14 ver-

x=ax’+ e(y), 4
susx, (at «=0.778 2651,3=0.3). x=ax“+e(y) @

wherea is the constant and(y) denotes the selected chan-
termittent jumps among laminar phases without chaotidel. It is assumed that in E@) an appropriate principal axis
bursts. And Fig. &) shows irregular intermittent jumps with is taken in order to eliminate the cross term betwrgand
chaotic bursts. The reason for the difference is that while thg,, in Eq. (2).

former is the intermittency passing a limit cydlease(a)], X andy are injected into the_laminar phase s_imultaneously
the latter is that passing a slightly different channel at eact@and are in a state of the laminar phase. So if we adopt the
laminar phasdsee Fig. 4. simultaneous channel entrance approximation we can easily

What is observed above is clearly understood when wdhtegrate Eq(4) for a particular channel and obtain the lami-
(Xn,Xn+1) Surface. The characteristics of two-dimensional 5
distinguish from the unique channel structure in one-wherex;, is the injection point and is the escaping point of
bits like O,,0,,03 in Fig. 1 is distinguished from the dis- observable laminar length is the average in terms of the

consider a two-dimensional return map on the parabolic suf?@r length scaling for a channelas follows[1,4,6]:
face ,,Yn Xn+1,¥Yn+1). But we plot the return map on the
a a
intermittency are also revealed by the projection of the tra- I(€,Xin) = Jae arctaV( \[ZC) —arctar< \[in”)
jectory. We call this exotic one a multichannel structure to
dimensional intermittencj/1—6]. the laminar phase. The laminar scaling for a particular chan-
Meanwhile, this multichannel structure caused by the ornel is the same as in one-dimensional case. However, the
persed channel structure in the presence of njglsd, be-  channel distribution function such that
cause the system follows a selected channel during the

laminar phase. In the former, we can see a fractal-like chan-

nel structure in the return map, which is not the case in the <|>:f |(€.xin) P(e)de. ©)
latter. In addition, it was reported that the scaling relation of

the laminar length for the latter is deformed such that By taking the channel average we obtain the following

~exp{(1/D)| e]*? (wheree<0 andD is noise strengthby  scaling relation for each channel structure.

the effect of random noig&,8]. Thus we emphasize that the (&) Limit cycle.Near the quasiperiodic windows, we use

conceptual difference between one- and high-dimensional irthe CDF such thaP(e)= 6(e— €p), since the trajectory is

termittencies is the formation of multichannel structure. unique on thex,-y, plane and it forms a unique channel
The return map between,, 1, andx, is presented in Fig. between the DHS and the local map. Then we obtain the

4 when the trajectory is chaotic. In the inset figure, we carfollowing scaling law:

observe broad channel such as the effect of noise. But it is

not caused by noise but by the multichannel structure, which 1
is the key feature of two-dimensional intermittency. This is (Hh~ NP (7)
the irreducible return map mentioned above and the inset €o

corresponds to the projected view of the parabolic surface in

Eq. (2). The difference is obvious when we obtain the scal- (0) Quasiperiodic orbit.The CDF is uniform in this case
ing relation. such thatP(€)=1/A whereA is a constanf6] and we con-

H — 2
The channel of this model is differently selected for eachSider the channel function such thely) =ay“+ €, because
entrance point by following the perturbation of the coupled©f the uniform passage of wheree, is the nearest chr?mnel
systems. These channel selections evoke the transversal g¥dth. Then the laminar scaling is derived as follows:
viation at the entrance point. On the contrary the reinjection d
process evokes the tangential difg. Near the tangent bi- :f _ de
furcation point, the local Poincamaap can be modeled as {1 |(y.Xin) P(y) dy(le In(eo)- ®
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(c) Chaotic region.As shown in Fig. 4, the channel has were just two different representations of the cégewhich
the fractal structure. Because the fractal distribution is diswere caused by different trajectories traveling around the bi-
crete,P(€) can be represented by summation of delta func{furcation point.
tions and the laminar length is actually dominated by the In conclusion, we have analyzed two-dimensional type-I
longest one that comes from the nearest channel wigls  intermittency. The return map has been extended to two-
dimensional one to analyze the characteristics. Three kinds
1 of possible intermittent time series have been discussed ac-
(1~ \/T ©) cording to the trajectory on the,-y,, plane and their scaling
. 0 ._relations were presented. The most crucial feature of two-
E\_/en_th_ough_ muIU_pIe channels are present, the SCE?‘I'nglimensional intermittency is the formation of multichannel
relation is invariant with that of one-dimensional type-I in-

. o T ) structure in the one-dimensional return map. This multichan-
termittency. If the channel distribution is continuous the scal-

) . . X ) nel structure causes more complex temporal behaviars
ing relation of the laminar length is drastically deformed as P P ,

) S . L Fig. 3), but the scaling relation is invariant with that of one-
in the case of quasiperiodic orlptee caséb). Quasiperiodic dir%erzsional type-I intgermittency

orbits]. Conversely, the scaling relation @~ 1€, guar- Note addedAfter the submission of the paper, we found
antees fractal distribution of the channels. _ __independent study on two-dimensional intermittency of non-
We simulate the laminar scaling near the period-14 Winyeqcible coupled mapgL7] that have different couplings
dow and present the results in Fig. 5. Near the chaotic anffym our model maps. They have rigorously analyzed the
limit cycle regimes, the laminar scaling shows the scalingyqpied maps in terms of renormalization group analysis
()~1Nep. The scaling relations confirm the previous wjthout discussion of the channel structure. Their scaling
analyseq Egs. (7) and (9)]. We do not find an appropriate agrees well with our§Eq. (7)].
parameter range for quasiperiodic orbit in this model but
expect to observe it in other systems. Once, there was a study We thank S. Rim for valuable discussions. This work was
on two-dimensional intermittency in area-preserving mapsupported by Creative Research Initiatives of the Korea Min-
[16]. The author reported two different scalings but thoseistry of Science and Technology.
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